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Abstract—Machine learning models are increasingly applied
to loan default prediction to reduce the labor cost of financial
institutions and the waiting time of lenders. We find that existing
loan default prediction models remain lack minimax fairness, i.e.,
encountering significant performance drops on underrepresented
subpopulations. The main cause of this trustworthy issue is pur-
suing Empirical Risk Minimization over the whole population,
which will overlook the underrepresented subpopulations. To
tackle this issue, we split the training data into subpopulations
(a.k.a. environments) and conduct Invariant Risk Minimization
(IRM) to learn the optimal prediction model across environments.
A technical challenge is the computation cost of directly using
existing IRM methods suitable for loan default prediction, such
as meta-IRM, which quadratically increases as the number of
environments. To reduce the complexity in training, we propose
a light meta-IRM method which reduces time complexity to
be linear through environment sampling and loss replaying
strategies. We apply the light meta-IRM to train a representative
loan default prediction model and conduct both online and offline
evaluations on a large auto loan platform. Extensive experiment
results validate the advantage of the proposed light meta-IRM
w.r.t. the overall accuracy, minimax fairness, and training cost.

Index Terms—Loan default prediction, Invariant risk mini-
mization, Fairness, Trustworthy

I. INTRODUCTION

Loan default prediction [1, 2] plays an important role
in the financial system, which predicts loan defaults for
financial institutions and the banking industry. In the current
financial system, human approvers are overwhelmed by the
massive loan applications, lengthening the average waiting
time [1]. To accelerate the reviewing procedure, machine
learning techniques [3–6] are increasingly adopted to share
the workload, which predict loan defaults from the profile

† Work done at Chery FS. This work is supported by the Chery HuiYin
Motor Finance Service Company Ltd..
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Fig. 1: The province-wise performance of a loan default
prediction model trained by the ERM method. Darker
color indicates better performance. “KS” denotes the Kol-
mogorov–Smirnov statistic.

of the lender such as occupation, income, and credit records.
Explainable machine learning models such as GBDT [4] and
Logistic Regression [3] are the standard choices for loan
default prediction due to the requirement of trustworthiness
in practice as the increase of relevant regulations on financial
algorithms launched by different countries [7].

In this work, we reveal that existing methods still face
trustworthy issues due to lacking the minimax fairness [8]
among different subpopulations, i.e., the model performance
on the underrepresented subpopulations are largely worse than
the others. Figure 1 presents evidence on the data from
one of the largest auto loan platforms in China1, where
the prediction model is trained over the aggregated data

1http://www.cheryfs.cn/english/.



from different provinces. As shown in the figure, the model
performance changes significantly across different provinces,
e.g., the model performs 39.05% worse on the applications
from Xinjiang province than Heilongjiang province, which
means applications from such underrepresented provinces have
a much higher risk to be faultily rejected. To avoid such a
trustworthy issue, it is essential to further pursue the minimax
fairness in the loan default prediction task.

Toward the goal, we apply the Invariant Risk Minimization
(IRM) [9] to the learning of loan default prediction models
instead of pursuing the Empirical Risk Minimization (ERM) as
the existing methods. Under the IRM paradigm, training data is
split into different environments (e.g., provinces) that represent
different subpopulations. IRM pursues the optimal loan default
prediction model in all environments. Undoubtedly, IRM will
enhance the performance of the underrepresented subpopula-
tions and facilitate the minimax fairness across environments
compared to the ERM. Moreover, IRM will capture the invari-
ant relationship between lender features and the occurrence of
defaults across different environments, i.e., pushing the model
to focus on features which causally affect the final status of
a loan [10]. As such, the model will get rid of the notorious
spurious correlation and generalize better.

Meta-IRM [11] is an effective implementation of IRM2

with broader applicability3 than other implementations such
as IRMv1 [9], which seems to be a promising choice for
learning trustworthy loan default prediction models. However,
the direct application of meta-IRM faces high overhead due to
the quadratic increase of computation and memory costs w.r.t.
the number of environments, which can be large in the loan
default prediction task. For instance, the cost of training a
model with meta-IRM over M environments is roughly M
times higher than ERM. Moreover, loan default prediction
models have to be updated periodically at a relatively high
frequency. Therefore, it is essential to improve the efficiency
of meta-IRM for usage in loan default prediction.

To tackle this challenge, we propose a light meta-IRM
(LightMIRM) method for efficiently training a fair loan default
prediction model. The key to accelerating meta-IRM lies in
avoiding the calculation of meta-losses from all environments
in every iteration. In this light, we devise two techniques to
equip meta-IRM: 1) environment sampling. We sample some
environments (K) instead of computing meta-losses from all
environments (M ) to reduce the number of calculations by K

M ;
and 2) meta-loss replaying. We recycle the history losses from
previous iterations to further reduce the number of calculations
by 1

K . We apply the proposed LightMIRM on a representative
loan default prediction model (cf. Figure 2) and conduct
both online and offline evaluations on the Chery FS auto
loan platform, where LightMIRM achieves better prediction
accuracy and minimax fairness than ERM with comparable
training cost.

In summary, the contributions are as follows:

2IRM corresponds to a hard bi-level optimization problem and meta-IRM
could more flexibly and effectively solve the problem.

3Do not assume the linearity of the prediction model.

• We reveal the unfairness issue of existing loan default
prediction methods and propose to optimize the minimax
fairness through meta-IRM.

• We propose LightMIRM with environment sampling and
meta-loss replaying, which reduces the computation cost of
meta-IRM to be comparable with ERM.

• We conduct online and offline experiments on a large auto
loan platform, validating the effectiveness and efficiency of
the proposed method.

II. RELATED WORKS

In this section, we will introduce some related works in loan
default prediction and fairness models for trustworthiness.

A. Loan Default Prediction

Loan default prediction is quite important in the financial
industry. When the platforms invest to the borrowers, they
take the risk of loan default which could lead to the loss of
their entire investment. Therefore, it is important for lending
platforms to accurately predict the probabilities of loan default
[12]. Nazeeh [13] proposes to use Random Forest Trees to
predict default samples, which is demonstrated to outperform
logistic regression [3], Support Vector Machine (SVM) [14],
and some other machine learning algorithms. Zhu et al. further
equip the Random Forest algorithm with SMOTE [15] to deal
with the imbalanced nature of the dataset. Xu et al. [16]
apply four machine learning methods including random forest,
extreme gradient boosting tree, gradient boosting model, and
neural networks to figure out implicit factors affecting repay-
ment failure. Li [17] adopts back propagation neural network
(BPNN) to simulate the loan default assessment process.

Above mentioned methods have achieved decent perfor-
mance, but tend to fall short in trustworthiness. They blindly
capture correlations between features and labels in training
data, hence ignoring some specific subpopulations. In the
industrial scenario, where have strict demands for trustwor-
thiness, they are infeasible solutions. Next, we will elaborate
more on trustworthy machine learning.

B. Trustworthy machine learning

In recent years, more and more research has been conducted
on technologies for trustworthy machine learning. They aim to
acquire AI-based services which have fairness, human rights,
privacy, and other properties together [18]. Toreini et al. [19]
summarize four key properties of trustworthy machine learning
systems: Fairness, Explainability, Auditability, and Security
(FEAS). When building loan default prediction systems, the
Explainability and the Auditability are determined by the
characteristics of the methods, e.g., deep learning methods are
known to be black-box which may have less explainability,
while logistic regression and tree-based methods can provide
reasons for their predictions. From this perspective, to achieve
trustworthy loan default prediction, we use “LightGBM +
Logistic Regression” to ensure that our method is explainable
and auditable. Moreover, the unfairness for different subpop-
ulations (Fairness) should be addressed properly.



The measurement of fairness falls under several categories
[20–22], while in our paper, we mainly focus on Calibration
[23, 24] which means that false positive rates across groups
should be similar. To ensure this condition, researchers focus
on the model performance in the worst cases. Sagawa et al.
[25] train models to minimize the worst-case loss over groups
in the training data to avoid learning models that rely on
spurious correlations and suffer a high loss on some groups
of data. Krueger et al. [26] minimize the average as well as
the variance of empirical risks on different groups to make
the model fair for different groups. However, Geoff et al.
[24] point out that the goals of low error and calibration are
less likely to be satisfied simultaneously for a model. As an
alternative, Johnson et al. [27] use a multi-calibration approach
to achieve approximate calibration with a high probability. Bae
et al. [11] propose meta-IRM which calculates the standard
deviation of meta-losses to learn invariant features existing
across different environments. Inspired by this idea, we also
use the variance across different provinces. However, such a
stream of methods requires a large time in data sampling which
leads to low model efficiency. To fit in the industry scenario
better, a more time-friendly approach is of great necessity.

III. METHOD

In this section, we first briefly introduce the preliminary
knowledge of this work. We then present the overview of the
proposed method for the loan default prediction task. Next,
we elaborate on each module of the model. Lastly, we give
some discussions about the time complexity and our designs.

A. Preliminaries

We first give the problem formulation and then briefly
introduce the invariant risk minimization.

1) Problem Formulation: Loan default prediction aims at
predicting loan default, i.e., the probability that a customer
will fail to repay the loan. This work studies the task in a
practical scenario where the data is collected from different
environments (e.g., provinces) that represent different sub-
populations. The environments are naturally heterogeneous
for various reasons, e.g., the differences in economies and
cultures. We aim to learn a model that can perform well
and fairly across these heterogeneous environments, improving
the trust to use the model4. Especially, we emphasize that
the model performance in the underrepresented environments
(e.g., Xinjiang province in Figure 1) should not drop largely
compared to others, i.e., pursuing minimax fairness.

Let D = {D1, . . . ,DM} denote the data, where Dm denotes
the data collected from the m-th environment, and M denotes
the number of environments. And we denote each sample in
Dm as (x, y), where y ∈ {0, 1} denotes whether or not a
user fails to repay the loan, and x denotes the raw features
of the instance, including basic applicant information (e.g.,
age), information from banks (e.g., the count of defaults), and
other information (e.g., car). Let X denote the space of the

4Both on the applicant and the platform side.

raw feature, i.e., x ∈ X , similarly y ∈ Y . We aim to learn
a predictor f : X −→ Y based on D, which could generate
accurate and fair predictions among different environments.

2) Invariant Risk Minimization: Recently, Invariant Learn-
ing is proposed to pursue optimal performances over all
possible environments [9, 28, 29]. Invariant risk minimization
(IRM) is the most representative method, which exploits
correlations invariant across all training environments to learn
an invariant predictor Φ ◦ w as follows:

min
Φ,w

M∑
m=1

Rm(Φ ◦ w)

s.t. w ∈ argmin
w̄

Rm(Φ ◦ w̄), for all m,

(1)

where Φ : X −→ H is a representation encoder that transfers
the raw feature x in the raw space X to a representation space
H; and w : H −→ Y is a classifier which generates predictions
based on the representation generated by Φ. Φ and w are
contacted together to form the overall predictor Φ ◦ w. This
equation indicates IRM tries to find a representation encoder Φ
such that the optimal w on top of the representation matches
for all environments, forming an invariant predictor Φ ◦ w.
Meanwhile, when utilizing patterns in one environment data,
IRM takes into account whether the patterns can enable better
overall performance across training environments, i.e., whether
the patterns are shared across environments, to capture invari-
ant correlations. That is significantly different from ERM.

IRM is obviously a bi-level optimization problem that is
hard to be directly solved. A more practical version of IRM
is IRMv1 [9], which approximately converts the constraints in
Equation (1) into an invariance penalty term by assuming w
is a fixed linear module. However, IRMv1 is just an approx-
imation for IRM and fails to capture invariant correlations in
many cases [30, 31]. To overcome the issue, Bae et al. [11]
propose to directly solve the IRM optimization problem to
find an invariant predictor f = Φ ◦ w with the meta-learning
method MAML [32, 33], which is widely used to solve bi-
level optimization problems.

B. Model Overview

Figure 2 illustrates the overall framework of our loan
default prediction model. The framework generally follows
a “GBDT+LR” architecture proposed by [34] with several
considerations: 1) the architecture is powerful but lightweight,
making it easy to be deployed [34, 35]; 2) a model built in
such an architecture is explainable compared to other machine
learning methods, which is critical for practical deployment; 3)
such a framework could achieve automatic feature engineering,
reducing human costs. As shown in Figure 2, the framework
is comprised of two key modules:

• Feature extraction module (the blue box of Figure 2),
which automatically selects and develops more effective
features from raw features;

• Logistic regression (LR) module (the yellow box of
Figure 2), which is the core prediction module and
learned with IRM.
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Fig. 2: Model overview. The blue box is the feature extraction
module, and the yellow box is the logistic regression module.

Although our framework follows the “GBDT+LR” archi-
tecture, there are also significant differences. Compared with
normal “GBDT+LR” methods, we take the invariant risk mini-
mization equipped with a fast meta-learning learning algorithm
to learn the LR model, instead of taking the ERM learning
paradigm. And we aim at achieving generalizable and fair
loan default prediction among different environments. Next,
we present the details of the two parts of our framework,
especially focusing on how to learn the LR model with IRM.

C. Feature Extraction

Feature extraction (also known as feature engineering),
which aims to select effective features and develop new
features from raw features, is vitally important for improv-
ing the performance of machine learning-based industrial
systems [36]. Feature engineering usually relies on experts’
knowledge, which could be expensive. To avoid paying huge
human efforts to feature extraction, we take the gradient boost
decision tree (GBDT) to achieve automatic feature extraction
for loan default prediction in a way similar to [34]. In short,
we first train a LightGBM5 model to predict the loan default
by optimizing the cross-entropy loss on D [34]. Then we treat
the trained decision trees of the model as a tuple of non-linear
transformations to select and combine features.

Specially, as shown in the blue box of Figure 2, for each
instance, we input its raw features into the well-trained Light-
GBM. Then, each tree in LightGBM is seen as a transforma-
tion function and will generate a new category of cross-feature,
i.e., combining feature, according to the inputted raw features.
The value of the generated categorical feature is the index of
the leaf that the inputted instance falls in, and the value will
be further one-hot encoded. For example, assuming the first
tree has three leaves and an instance falls in the second leaf of
the tree, the one-hot encoded value of the categorical feature
generated by the first tree is [0, 1, 0]. Lastly, we concatenate the
categorical features generated by different trees, formulating a

5LightGBM is an effective and efficient GBDT-based algorithm.

multi-hot feature vector (denoted as x ∈ RN , where N is the
dimension of the vector) for the instance (with raw feature x).

D. Invariant Risk Minimization-based Logistic Regression
There are two demands for a predictor in our loan default

prediction task: 1) it should generate fair predictions for
different environments, i.e., not show favoritism or prejudice
towards the applicants (users) in certain environments; 2)
it should achieve good overall performance over different
environments. However, building a predictor with the ERM
learning paradigm is easily dominated by some environments
and suffers from spurious correlation issues, resulting in poor
and unfair cross-environment performance. For example, a
predictor learned with ERM possibly provides worse pre-
dictions for the environments with fewer data, and blindly
predicts higher scores for the applicants belonging to the
environments with higher loan default rates. To address this
dilemma, we propose to learn the LR predictor with invariant
risk minimization (IRM) to satisfy the two demands. IRM
optimizes both the specific performance on each environment
and the overall performance over environments, capturing
the invariant correlations across different environments. That
means IRM does not bias toward some special environments
with the overall performance kept. Therefore IRM is suitable
for achieving good and fair performance across environments.
We next present how to learn the LR model with IRM from
two aspects: learning objective and learning algorithm.

1) Learning Objective: We take f to represent the LR
model. For instance (x, y) ∈ D, f generates the prediction
as follows:

ŷ = f(x;θ) =
1

1 + e−θ⊤x
, (2)

where x ∈ RN represents the one-hot vector gotten by the
feature extraction module for the instance and θ ∈ RN denotes
the model parameters of the LR model.

To pursue fair and good overall performances over different
environments, we apply the IRM objective in Equation (1) to
learn the LR model. Formally,

min
θ

∑
m

Rm(Dm;θ) (3a)

s.t. θ ∈ argmin
θ̄

Rm(Dm; θ̄), for all m, (3b)

where m denotes the m-th environment, Rm(Dm;θ) denotes
the loss on the data Dm and is computed with the binary cross
entropy function. Formally,

Rm(Dm;θ) =
1

|Dm|
∑

(x,y)∈Dm

− y log(f(x;θ))

− (1− y) log(1− f(x;θ)),
(4)

where |Dm| denotes the size of Dm and f(x;θ) is the
prediction of LR model as shown in Equation (2).

Remark. The original IRM in Equation (1) splits a predictor
into two parts — w and Φ, and learns an invariant predictor
by finding a suitable w and Φ, respectively. Differently, we try
to directly find a whole predictor, which could lead to good



Algorithm 1: The learning algorithm of Meta-IRM
Require: D = {D1, . . . ,DM}; Inner/outer loop learning

rate α/β; hyper-parameter λ.
1: Initialize: Randomly initialize model parameters θ
2: // outer loop
3: while Stop condition is not reached do
4: // inner loop
5: for all m ∈ {1, . . . ,M} do
6: Compute Rm(Dm;θ).
7: Compute θ̄m = θ − α∇θR

m(Dm;θ).
8: Compute Rmeta(θ̄m) =

∑
m′ ̸=m Rm′

(Dm′ ; θ̄m).
9: end for

10: Compute the standard deviation σ of
{Rmeta(θ̄m)}Mm=1.

11: Update θ ← θ − β∇θ(
∑

m Rmeta(θ̄m) + λσ)
12: end while

overall performances across environments (Equation (3a)) and
match for all environments (Equation (3b)), to capture invari-
ant correlations. The main consideration is that the LR model
is very shallow, and thus is not easy to split. Meanwhile, such a
manner has been taken by previous work, and its effectiveness
in capturing invariant correlations has been verified [11].

2) Meta-based Learning Algorithm: Our IRM learning ob-
jective in Equation (3) is a hard bi-level optimization problem.
Instead of directly solving it, we follow previous work [11] to
solve it with a famous meta-learning method MAML [32]. In
short, we convert the challenging bi-level optimization of IRM
into the two-level optimization scheme of the meta-learning
framework by constructing a task for each environment. Al-
gorithm 1 shows the MAML-based learning process. In the
algorithm, we optimize the objective in Equation (3b) in the
inner loop of MAML (lines 6-7), making the predictor perform
well in a certain environment; and we optimize the objective
in Equation (3b) in the outer loop of MAML (lines 10-11),
making the predictor perform well across environments with
the consideration of satisfying constraints in Equation (3b).
We next describe the main steps in the inner loop and outer
loop, respectively.

Inner loop: As shown in Equation (3b), we need to find
optimal predictors for different environments. Therefore, for
each environment m, we update the model parameters θ of
the LR predictor to minimize the loss Rm(Dm;θ), getting a
temporary θ̄m for the environment. Formally,

θ̄m = θ − α∇θR
m(Dm;θ), (5)

where α denotes the learning rate in the inner loop.

Outer loop: In the outer loop, we need to make the
predictor perform well across all training environments (Equa-
tion (3b)) and satisfy the constraints in Equation (3b). To-
wards this goal, we update the model parameters θ based on

Algorithm 2: LightMIRM
Require: D = {D1, . . . ,DM}; Inner/outer loop learning

rate α/β; hyper-parameter λ
1: Initialize: Randomly initialize model parameters θ;

initialize the elements of Hm as zeros for each m.
2: // outer loop
3: while Stop condition is not reached do
4: // inner loop
5: for all m ∈ {1, . . . ,M} do
6: Compute Rm(Dm;θ).
7: Compute θ̄m = θ − α∇θR

m(Dm;θ).
8: Randomly sample an environment sm ( ̸= m).
9: Compute Rsm(Dsm ; θ̄m) and put it into Hm.

10: Compute Rmeta(θ̄m) =
∑L

i=1(γ)
L−iHi

m.
11: end for
12: Compute the standard deviation σ of

{Rmeta(θ̄m)}Mm=1.
13: Update θ ← θ − β∇θ(

∑
m Rmeta(θ̄m) + λσ)

14: end while

{θ̄m}Mm=1, as follows:

θ ← θ − β∇θ

(∑
m

Rmeta(θ̄m) + λσ

)
, (6)

where Rmeta(θ̄m) denotes the overall loss without considering
the m-th environment, taking θ̄m as the model parameters of
the predictor, i.e.,

Rmeta(θ̄m) =
∑

m′ ̸=m

Rm′
(Dm′ ; θ̄m),

and Rmeta(θ̄m) is termed meta-loss; and
∑

m Rmeta(θ̄m)
indicates that we finally update the predictor with the con-
sideration of all {θ̄m}Mm=1, i.e., considering all the constraints
in Equation (3b); β is the learning rate in the outer loop; λ
is a hyper-parameter to control the strength of σ, and σ is an
auxiliary loss proposed in [11], which is computed as follows:

σ =

√√√√ 1

M

∑
m

(
Rmeta(θ̄m)− 1

M

∑
m′

Rmeta(θ̄m′)

)2

. (7)

σ is indeed the standard deviation of {Rmeta(θ̄m)}Mm=1, and it
could enable more stable training and faster convergence [11].

The updates in the inner loop and the outer loop are
iterated until the stop condition is reached, as shown in line
3 of Algorithm 1. We denote the LR predictor learned with
Algorithm 1 as meta-IRM.

E. Light Meta-based Invariant Risk Minimization

Although meta-IRM could easily solve the bi-level opti-
mization problem in Equation (3), it is not directly appli-
cable in the industry due to its high computational cost,
which is at least M times than ERM-based methods. As
shown in Algorithm 1, we need to compute a Rmeta(θ̄m) =∑

m′ ̸=m Rm′
(Dm′ ; θ̄m), which is nearly calculated on the
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Fig. 3: Illustration of the LightMIRM, which contains two key parts for speeding up the training — environment sampling
and meta-loss replaying. “MRQ” denotes our meta-loss replaying queue.

total data D, for each environment m. That means meta-
IRM needs to calculate M times the loss on the total data,
while the ERM-based method only needs to calculate the loss
once. Meanwhile, there is the additional cost of computing the
second-order gradients in the outer loop of meta-IRM. Thus,
meta-IRM has at least M times the computational cost.

To make the meta-IRM applicable in the industry, we
propose a light version of meta-IRM named Light Meta-based
Invariant Risk Minimization (LightMIRM), which speeds up
the training process via effective and efficient sampling.
LightMIRM has a similar learning algorithm to meta-IRM
(Algorithm 1) but calculates Rmeta(θ̄m) more rapidly. Es-
pecially, LightMIRM contains two main designs — environ-
ment sampling and meta-loss replaying— to rapidly calculate
Rmeta(θ̄m), as shown in Figure 3.

Environment sampling. A direct way to rapidly compute
the meta-loss Rmeta(θ̄m) is sampling partial environments Sm

to approximately compute it as

Rmeta(θ̄m) =
∑

m′∈Sm

Rm′
(Dm′ ; θ̄m),

instead of utilizing all environments. In this way, although only
partial environments are considered in Rmeta(θ̄m), the overall
loss of training environments could also be approximately
optimized via re-sampling environments at each iteration6. Let
K denote the size of Sm. We can reduce the computation cost
to K/M of meta-IRM. A smaller K obviously means greater
acceleration. To minimize the computational cost, we only
sample one environment. We denote the sampled environment
as sm ( ̸= m), and then Sm = {sm}.

6E.g., different batches when learning the model in a mini-batch manner.

Meta-loss replaying. Although only sampling one envi-
ronment to calculate the meta-loss Rmeta(θ̄m) could reduce
the computation cost to the greatest degree, it could lead to
bad performance. This is because a smaller sampling size
means a worse approximation to the ideal Rmeta(θ̄m) =∑

m′ ̸=m Rm′
(Dm′ ; θ̄m) and thus leads to worse performance,

as shown in Figure 6. To avoid sacrificing the performance
when just sampling an environment, we propose a module
named Meta-loss Replaying, in which the main component
is the Meta-loss Replaying Queue (MRQ). MRQ is a fixed-
length queue, which could store the losses of the environments
sampled in previous iterations. We take the loss of the new
sampled environment and the losses stored in the queue
to better approximate the ideal Rmeta(θ̄m). Especially, as
shown in Figure 3, for each environment m, we construct a
MRQ denoted as Hm. In each iteration, after getting the θ̄m
according to Equation (5) and sampling an environment sm,
we compute the loss Rsm(Dsm ; θ̄m), and then put it into Hm

as follows:

Hi
m = Hi+1

m 1 ≤ i ≤ L− 1

HL
m = Rsm(Dsm ; θ̄m),

(8)

where Hi
m denotes the i-th element in Hm, L denotes the

length of the queue. In this way, we move the elements in the
queue forward one by one, and then put Rsm(Dsm ; θ̄m) into
the last position of the queue. Note that Hi

m (i = 1, . . . , L−1)
stores the losses on the environments sampled in the previous
iteration, which are computed with the previous θ̄m gotten in
the corresponding iterations. Next, we approximately compute



Rmeta(θ̄m) according to Hm. Formally,

Rmeta(θ̄m) =

L∑
i=1

(γ)L−iHi
m, (9)

where γ is a decay coefficient. (γ)L−i represents paying more
attention to the losses of most recent iterations, considering
that these losses are more reliant.

With environment sampling and meta-loss replaying, Light-
MIRM could achieve rapid calculation of Rmeta(θ̄m), reduc-
ing the time-consuming of training. Algorithm 2 summarizes
the training process of LightMIRM. Compared with the learn-
ing algorithm shown in Algorithm 1, the only differences
are that LightMIRM computes approximately the meta-loss
Rmeta(θ̄m) with environment sampling and the meta-loss
replaying (lines 8 to 10), and the following steps utilize the
approximated meta-loss Rmeta(θ̄m) (lines 12-13).

Discussion. How well does the meta-loss computed with the
meta-replaying method approximate the true meta-loss? It lies
in the differences between the replayed loss and the loss re-
computed in each iteration for the same environment. The
smaller the difference is, the better the approximation is.
We could take a relatively small learning rate (1e-6 in this
work) to keep the loss of an environment close between two
consecutive iterations [37, 38] and take a length-fixed queue to
filter far-distant history losses. The operations could make the
differences relatively small, leading to a good approximation
of the true meta-loss. Moreover, we pay more attention to
the more recent losses memorized in the queue, making the
approximated meta-loss more reliant.

F. Time Complexity Analyses

We next analyze the time complexity of meta-IRM and
LightMIRM. To simplify, we treat each forward/backward
propagation on an environment, e.g., computing Rm(Dm;θ)
and computing ∇θR

m(Dm;θ), as an atomic operation and
omit the time cost of others.

Meta-IRM. According to Algorithm 1, the cost of (the
operation in) line 6 (line 7) is O(1), and the cost of line 8
is O(M − 1). Considering the loop in line 5, the total cost of
lines 5 to 9 is O(M ∗(1+1+M−1)) = O(M2+M). The cost
of line 10 is O(0), and the cost of line 11 is O(M ∗ (M −1)).
The cost of other lines is 0. Thus, in each iteration, the total
cost is O(M2 +M +M ∗ (M − 1)) = O(2M2).

LightMIRM. According to Algorithm 2, the cost of (the
operation in) line 6 (line 7) is O(1), the cost of line 8 is
O(0), the cost of line 9 is O(1), and the cost of line 10 is
O(0). Considering the loop shown in line 5, the total cost of
lines 5 to 10 is O(M ∗ (1 + 1 + 0 + 1 + 0)) = O(3M). The
cost of line 12 is O(0), and the cost of line 13 is O(M ∗ 1)
(only the last element in the queue has gradients). The cost
of other lines is 0. Thus, in each iteration, the total cost is
O(3M +M) = O(4M).

IV. EXPERIMENT

In this section, we conduct experiments on the historical
transaction data of Chery FS with the aim of answering the
following research questions:
• RQ1: Why do we need trustworthy models?
• RQ2: Do our proposed light meta-IRM methods outperform

the state-of-the-art methods?
• RQ3: How does our proposed method accelerate the training

of Meta-IRM?
• RQ4: What are the impacts of each part of the proposed

model?
• RQ5: Why does our method outperform other methods?

A. Experimental Setup

1) Baselines: We compared our proposed Light Meta-IRM
methods with the following methods:

ERM [3]. The goal of ERM is to train a linear regression
model which can get a minimum loss on the training set.
This method assumes that the training set and the test set are
independent and identical.

ERM + fine-tuning. In order to fit the differences between
various environments, the ERM model is fine-tuned for each
province respectively before the evaluation.

Up-sampling. This method adopts an up-sampling strategy
in provinces with fewer samples. Note that we could adjust
the rate of negative samples in loss function respectively.

Group DRO [25]. The group DRO aims to achieve substan-
tially higher worst-group accuracy by coupling group DRO
models with increased regularization.

V-REx [26]. This method not only uses the mean of losses
calculated from different environments, but also minimizes
the variance of losses which can decrease the discrepancy of
performance in various environments.

2) Evaluation Metrics: Methods mentioned above are eval-
uated by the following metrics:

Area Under Curve(AUC): AUC is a performance measure-
ment based on the ROC curve, which shows the performance
of a classification model under different classification thresh-
olds. The ROC curve plots the True Positive Rate (TPR) and
False Positive Rate (FPR) at different classification thresh-
olds whose area under the curve is AUC. Moreover, AUC
represents the capacity of the model to distinguish different
classes, especially in tasks like loan default prediction, where
the classes are imbalanced.

Kolmogorov-Smirnov(KS): KS statistic [39] is widely
used in binary classification problems. The KS statistic for
two samples is simply the largest distance between their two
cumulative distribution functions. Similar to AUC, KS statistic
represents the discrimination of the model as well. A higher
value in KS means that the model has a stronger risk-ranking
ability.

However, figuring up the AUC and KS on all of the test
sets can not express the performance of the model on a
certain environment, which is not in line with our goals. In
order to explicitly measure the model performance on different
environments, we do not calculate the AUC and KS over all



2 4 6 8 100.0

0.1

0.2

0.3

0.4

Vehicle types

Ra
te

2016
2019

Fig. 4: The distribution of vehicle types in different years.
Because it changes from year to year, we ignore the years
between 2016 and 2019 for space.

of the test sets. Note that our objective is to perform well
on worst cases without harming the overall performance; we
focus on two sets of metrics: (1) mean value (i.e., mKS for
the mean KS value and mAUC for the mean AUC) to evaluate
the overall performance; (2) the minimum (i.e., wKS for the
worst KS value and wAUC for the worst AUC) to evaluate the
fairness of the methods.

B. Data Analysis

We conduct experiments on Chery FS’s historical transac-
tion data. The dataset consists of 1.4 million records with
210-dimensional features. We observe that data collected from
different provinces tend to have various patterns. Hence to
evaluate the fairness of our methods in loan default tasks, we
treat different provinces as different environments. To answer
RQ1, the necessity of considering the trustworthiness issue
can be summarized in two folds:

Firstly, the types of customers are different in various areas
due to the shift of business centers. For instance, it is more
likely to have more customers who buy trailer trucks in the
area where trade is more developed. Whereas in economically
backward areas, the proportion of customers who buy used
cars may be higher. This can be illustrated in Figure 4.
This issue will lead to varying patterns of users in different
provinces which means the concept shift also exists across
environments. So the conventional ERM methods could be
unfair to these provinces, and we need more trustworthy
models for prediction. Therefore, we will use the minimum
metrics in various environments to assess the performance in
the worst cases, thus inferring the fairness of the model.

Interestingly, we discover another kind of data drifts in the
dataset. We extract data from 2016 to 2019 as the training
set and leave 2020 as the test set. We suppose this setting is
more in accordance with real-world applications. Specifically,
the user percentage of various provinces can be changed as
time goes by. For example, the Guangdong province has the
highest percentage of users from 2016 to 2019. However,
the number of transactions in Guangdong province begins to
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Fig. 5: The false positive rate and the default rate in the online
test.

decline significantly in 2020. In light of this, we suppose that
the distribution of provinces has covariate shift, which could be
formulated as Ptr(y|x) = Ptest(y|x)&&Ptr(x) ̸= Ptest(x).
Furthermore, there are a number of provinces suffering from
COVID-19, which reduces the ability of most borrowers to
repay their loans. This is called concept shift which is defined
as Ptr(y|x) ̸= Ptest(y|x). Therefore, the covariate shift and
the concept shift co-occur in the default prediction task and the
traditional ERM methods could suffer from this issue which
may lead to models becoming unreliable. We will use the mean
of metrics in different provinces to evaluate the model’s overall
performance.

C. Performance Comparison

1) Online Comparison: Firstly, we compare our model
with Chery FS’s existing online model, our model brings the
following three enhancements:
• The model trained by our method is a plug-and-play model

that can co-exist with existing online models. Therefore, our
model can be adopted without applying any changes to the
online architecture.

• Our method could reduce the bad debt rate by 63 percent
while the threshold is 0.5. The online model has a 2.09
percent bad debt rate. After appending our model to the
existing evaluation system as a companion runner, the bad
debt rate could be reduced to 0.73 percent.

• As shown in Figure 5, the curve in the first half of the picture
is very steep and becomes flat in the second half of the
figure. Therefore, we can reduce the bad debt rate by only
refusing a little number of loans. The domain experts could
use their operation knowledge to find a trade-off between
the two indicators.
2) Main Comparison Results: To answer RQ2, we evaluate

the performance of mentioned baselines and the proposed
method, and the comparison results are reported in Table I.

Firstly, as shown in Table I, our method outperforms ERM
on most of the metrics, except for the mean AUC. Specially,
we improve 0.0304 (i.e., as much as 7.6%) on the minimum
KS value, suggesting that ERM could obtain a high score on



TABLE I: Performance comparison. The best results of all
methods are indicated in boldface. mKS stands for the mean
KS value, while wKS stands for the worst KS value.

Methods mKS wKS mAUC wAUC
ERM 0.5784 0.3887 0.8356 0.7438

ERM + fine-tuning 0.5767 0.4144 0.8337 0.7483
Up Sampling 0.5781 0.3992 0.8330 0.7468
Group DRO 0.5615 0.3835 0.8253 0.7406

V-REx 0.5762 0.4000 0.8329 0.7471
meta-IRM 0.5781 0.4069 0.8332 0.7460

LightMIRM(our) 0.5794 0.4183 0.8351 0.7518

TABLE II: Performance comparison between meta-IRM and
LightMIRM, the best results are in boldface.

Methods mKS wKS mAUC wAUC
meta-IRM 0.5781 0.4069 0.8332 0.7460

meta-IRM(20)a 0.5762 0.4079 0.8334 0.7335
meta-IRM(10) 0.5728 0.367 0.8335 0.7304
meta-IRM(5) 0.5736 0.3630 0.8342 0.7333
LightMIRMb 0.5794 0.4183 0.8351 0.7518

aThe number of sampled provinces. bThe length of MRQ is 5.

mean metrics (i.e., overall performance) but it is unfair for
some provinces. To tackle this issue, the conventional solution
is fine-tuning the parameters of each province. However, fine-
tuning could highly depend on the data quality and data
distribution which is not a stable method. From the empirical
observation, although fine-tuning can improve the worst score,
it may behave worse in some provinces compared to the
original ERM method which leads to lower mean performance.
This interesting finding further validates the superiority of
the proposed methods since we can perform better than the
fine-tuning method on both the worst KS and the worst AUC
without hindering the overall performance.

Secondly, we compare our method with more equitable
methods which have already been illustrated in Section IV-A1.
These methods have quite varying performances on CheryFS’s
dataset. For example, Up Sampling could get a higher mean
performance, but can not perform well on the worst score.
On the contrary, the V-REx could perform well on the worst
metrics, but poorly on mean performance because of the
limitation of variance. Differently, our method optimizes the
parameters to align the goal of IRM, which endows our
method with the ability to achieve both the highest mean
and minimum scores. Specifically, our method achieves 0.0011
improvements over the Up Sampling on the mean KS value.
Moreover, on the worst KS value, our method is 0.0191 higher
than V-REx. More importantly, we compare our method with
meta-IRM. As expected, the meta-IRM can outperform other
methods except for our method.

3) Comparing with Meta-IRM: To validate the effective-
ness of our design, we perform a detailed comparison between
LightMIRM and meta-IRM under different sampling numbers
(i.e., complete, S=5, S=10, S=20). The percentage of relative
improvement on each metric are reported in Table II. The main
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Fig. 6: The result of meta-IRM with different number of
samples and LightMIRM where S denotes the number of
samples.

TABLE III: Time Cost for Operation Steps

Methods
Step meta-IRM meta-IRM(5) LightMIRM

loading data 0.0007s 0.0007s 0.0007s
transforming the format 0.0039s 0.0042 0.0043s

inner optimization 0.0058s 0.0057s 0.0063s
calculating the meta-losses 0.3067s 0.0054s 0.0113s

backward propagation 0.0536s 0.0320s 0.0314s
the whole epoch 6124s 1466s 520s

observations are as follows:
• LightMIRM outperforms all meta-IRM variants by a large

margin. Firstly, on Cheryfs’s dataset, the highest mean
of KS value of complete meta-IRM is 0.5768, while our
LightMIRM can reach 0.5792 under the same setting. Fur-
thermore, for the worst KS value, our method achieves an
even higher improvement, which is 0.0178 higher than the
most competitive baseline.

• We further plot the evolution of testing KS value during
training in Figure 6 to reveal the advantages of LightMIRM
and to be clear of the training process. As shown in Figure
6, we observe that LightMIRM performs better than all of
the sampling variants of the meta-IRM, and achieves similar
scores with the complete meta-IRM. Note that LightMIRM
requires much fewer operations than meta-IRM, which will
be further discussed in Section IV-D. This suggests that we
could reduce time complexity and computational complexity
significantly, without sacrificing the performance of the
model and even boosting it.

• For the converging efficiency, we see that the complete
meta-IRM could converge more rapidly because of more
computation. As a result, the curve of LightMIRM is below
the complete meta-IRM at the beginning. However, more
computation per epoch leads to a complex model which
increases the probability of overfitting, as seen in Figure
6. Hence, the score of the LightMIRM begins to surpass
the complete meta-IRM after 9 epochs and maintains this
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advantage till the end.
• In Figure 6, we can also see that the number of sampled

provinces could largely affect the performance of meta-IRM.
Moreover, compared with meta-IRM(20) which possesses
similar converging epochs, the LightMIRM only contains 5
samples and thus is more computationally efficient but has
a higher upper limit.

D. Time Complexity Analysis of Meta-IRM and LightMIRM

To answer RQ3, we compare the efficiency of the models
and count the time of the different parts of the algorithms. In
practice, we find that there are five operations that consume the
most time, including loading data, transforming input into the
one-hot format, inner optimization, calculating meta-losses,
and final optimizing. Specially, we conduct experiments on
CPU i7-11700 with 32GB RAM. Due to the trade secret
requirements from Chery FS, we run the experiments on their
workstations where GPU is not applicable. We leave the time
complexity analysis on GPU for future work.

As shown in Figure 7, we observe that the loading data
step consumes the least time which can be ignored. Moreover,
the time cost for all the methods to transform the format
and conduct inner optimization is nearly the same. However,
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Fig. 9: The impact of the length of MRQ. (a) represents the
mean KS value of different lengths and (b) represents the
minimum KS value of various lengths.

complete meta-IRM spends lots of time to calculate the meta-
losses, and LightMIRM is 30 times faster when conducting
this operation.

What’s more, as illustrated in Table III, the whole epoch
time exhibits a great deal of variation. Compared with the
complete meta-IRM, the LightMIRM takes only 8 minutes for
an epoch while the complete meta-IRM needs 102 minutes.
Our method can acquire a much stronger performance yet save
12 times as much time. Moreover, by combining 6 and Table
III, we can see that our method has a higher score than meta-
IRM(5), which takes a similar time to the proposed method.

E. Ablation Analyses

To answer RQ4, we perform ablation studies on Light-
MIRM showing how the length of MRQ and weight of MRQ
affect its performance.

1) Impact of the Length of the MRQ: Figure 9 shows the
result of LightMIRM with different lengths i.e., from 1 to 9.
We have two main observations:
• When the LightMIRM has an MRQ of length 1, it degrades

into meta-IRM sampling one province. In this case, the
model has a poor performance on both the mean KS value
and the minimum KS value compared to other settings.
This finding indicates that meta-losses of other provinces are
informative to the model of a specific province. Therefore, it
is effective to utilize the MRQ structure to store meta-losses
of different provinces.

• Focusing on the peak points of two images, we find that
adopting MRQ of length 7 could get the highest mean
score, and utilizing MRQ of length 5 can obtain the highest
minimum KS value. The result verifies the effectiveness of
our length-fixed queue on filtering far-distant history losses.
Hence the length of MRQ should be chosen appropriately,
neither too long nor too short. And generally, the perfor-
mance of the proposed MRQ is stable around the optimal
length.
2) Impact of the Weight γ of the MRQ: As shown in Table

IV, our conclusion is two folds. Firstly, we observe that the
MRQ with weight 1 has the worst performance in almost all
of the metrics. Recall that γ controls the weight of meta-
losses from other provinces, we suppose the relative weight



TABLE IV: The Impact of the Weight γ of the MRQ

γ mKS wKS mAUC wAUC
0.1 0.5784 0.4172 0.8343 0.7548
0.3 0.5779 0.415 0.8348 0.7521
0.5 0.5792 0.4191 0.8345 0.7523
0.7 0.5781 0.4144 0.8349 0.7526
0.9 0.5794 0.4183 0.8351 0.7518
1 0.5777 0.4170 0.8341 0.7489
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Fig. 10: The ratio of transactions in Guangdong to the all from
2016 to 2020.

TABLE V: The performance comparison on Guangdong

method KS AUC
ERM 0.6409 0.8818

Up Sampling 0.6475 0.8791
Group DRO 0.6365 0.8711

V-REx 0.6485 0.8794
meta-IRM 0.6489 0.8789

LightMIRM 0.6539 0.8821

of historical losses should be controlled since they are from
the past iteration from other provinces. This finding supports
our assumption that our meta-replaying method works the
best when more attention is paid to the more recent losses.
Furthermore, as we take a closer look at the result from weight
0.1 to weight 0.9, we find that none of the weights achieve the
best performance constantly, suggesting that it is important to
seek a balance between utilizing the meta-losses from other
provinces and reducing the bad influence of past losses.

F. Effectiveness Analyses

To answer RQ5, we conduct an in-depth analysis of the
effectiveness of our methods. As shown in Section IV-B, there
are distribution shifts in data as time goes by. We guess that our
methods can learn invariant features which are stable across
different environments as well as at different times. In this
subsection, the hypothesis is verified.
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Fig. 11: The Performance of different methods on Hubei
Province in 2020. And the “US” is the UpSampleing method.

1) The Performance on Special Provinces: In this section,
we investigate the generalization of the model in some special
provinces.

Firstly, because of the shift in focus of Chery FS’s op-
erations, the ratio of transactions in Guangdong Province
decreases year by year. As illustrated in Figure 10, the share
of Guangdong Province in 2020 is only half of what it was
from 2016 to 2019. Therefore, we treat the data of Guang-
dong Province as out-of-distribution data which we utilize to
evaluate the generalization ability of the methods.

As shown in Table V, We have the following observations:
• Among the methods, LightMIRM performs best with a KS

value of 0.6539. The result indicates that the LightMIRM
can learn invariant patterns which could resist the distribu-
tion shift induced by time. Therefore, we believe that the
LightMIRM can perform well in industrial scenarios stably
and sustainably.

• An interesting finding is that traditional ERM could get
a decent AUC but a relatively low KS score. Given the
knowledge that ERM may fail under data drift, we suppose
the KS score is more reliable in this scenario where AUC
may be misleadingly high.
Secondly, we pay attention to a special province. Recall

that our train set consists of the data from 2016 to 2019, but
the model is validated and tested on the data of 2020, there
should be a large data drift on a special province that severely
suffers from COVID-19. In the first half of 2020, the Hubei
Province got hit by the epidemic and started to get on track
in the second half of 2020. This period is such a special time
that we assume that the patterns of the customers in Hubei
Province changed greatly in the first half of 2020, but rolled
back in the second half of 2020. Therefore, similarly to the
change in Guangdong Province, we can evaluate the model
trustworthiness in Hubei Province.

As shown in Figure 11, we focus on the generalization
performance of the model in the first half of the year. And
we have the following observations:
• Focusing on the first half of 2020, the ERM gets the lowest

performance except for Group DRO. However, the ERM



TABLE VI: Performance comparison with random splitting
(i.e., i.i.d settings)

Methods mKS wKS mAUC wAUC
Up Sampling 0.6056 0.4983 0.8709 0.8093
Group DRO 0.5977 0.4944 0.8669 0.811

V-REx 0.6058 0.5019 0.8715 0.8147
meta-IRM (5) 0.6067 0.5216 0.8717 0.8208

meta-IRM(complete) 0.6081 0.5188 0.8722 0.8235
LightMIRM 0.6066 0.5235 0.8715 0.8223

method obtains the highest KS value in the second half of
2020. We attribute this phenomenon to two main reasons.
Firstly, the result of the ERM verifies our assumption
that the patterns of customers in Hubei Province change
significantly in the first half of 2020 and roll back in the
second half of 2020. Secondly, the ERM can perform well
on data with similar distribution, however, it suffers from
changes in the patterns of data.

• Our method obtains the highest KS value 0.5152. This
means that our method could learn some invariant features
less likely to be affected by COVID-19. And compare to
other methods, our method could obtain a similar result
in two periods which indicates that our method has higher
security.

• We find that there is a balance between the performance of
the model on the data in the first half of 2020 and the second
half of 2020, indicating that the model which learns more
invariant features could be more trustworthy. But the price
is that it might lose some performance on data that does
not change much. e.g., the meta-IRM gets the best score in
the first half of 2020, indicating its ability to capture more
invariant features. But its performance sharply drops in the
second half where the distribution is more similar to the
original data.

2) The Performance on the i.i.d. Setting: We also conduct
experiments on the i.i.d. setting where datasets are split
randomly. In this case, the impacts of the time are eliminated
so that we could evaluate the fairness of the method on the
i.i.d. setting.

Table VI shows the result of LightMIRM and other OOD
methods, which could represent the fairness of the methods.
We have two main observations:

• The LightMIRM could obtain a similar mean score with
meta-IRM when sampling number S=5. However, on the
worst province, the LightMIRM could perform better
than meta-IRM(5), even better than the complete meta-
IRM which is the most competitive baseline. This finding
suggests that the capacity of classification of the method
could be affected by the number of the meta-losses and
LightMIRM could obtain a fairer model in a similar setup.

• The best method is the complete meta-IRM, which ob-
tains the 0.6081 mean KS value and 0.8722 mean AUC.
This means that the methods which calculate more meta-
losses could obtain a better score. However, as illustrated

in Table III, the complete meta-IRM takes 12 times
longer than LightMIRM while only gaining 0.0015 mean
KS higher. Furthermore, compared with Table I, we
have reason to believe that our method performs well
on time-changing data because our method can capture
more invariant features across time and thus have better
robustness. To conclude, LightMIRM is more suitable for
industrial scenarios.

V. CONCLUSION

In this work, we revealed that existing loan default predic-
tion methods face trustworthy issues due to lacking the min-
imax fairness among different environments. To achieve fair
predictions, we proposed to apply invariant risk minimization
to learn the prediction models. Furthermore, we proposed a
rapid meta-learning-based solution named LightMIRM, which
speeds up the training with environment sampling and meta-
loss replaying, to effectively and efficiently implement IRM
in our industrial scenarios. We conducted extensive exper-
iments on industrial data and provided insightful analyses
of the experimental results, demonstrating the effectiveness
of our proposal in improving training efficiency and solving
trustworthy issues.

We believe solving the trustworthy issues is vitally im-
portant for the applications of machine-learning methods in
industry, to meet legal regulations’ requirements and increase
user trust. This work mainly focuses on the minimax fairness
problem in loan default prediction. In the future, we will
extend our machine-learning-based load default prediction
system to solve more trustworthy issues, such as individ-
ual fairness and transparency [40]. Besides, we will explore
applying more advanced machine-learning methods in our
industrial scenarios with the consideration of satisfying the
explainability, efficiency, and trustworthiness demands.
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[27] U. Hébert-Johnson, M. Kim, O. Reingold, and
G. Rothblum, “Multicalibration: Calibration for the
(computationally-identifiable) masses,” in ICML, 2018,
pp. 1939–1948.

[28] E. Creager, J.-H. Jacobsen, and R. Zemel, “Environment
inference for invariant learning,” in International Con-
ference on Machine Learning. PMLR, 2021, pp. 2189–
2200.

[29] J. Liu, Z. Hu, P. Cui, B. Li, and Z. Shen, “Heterogeneous
risk minimization,” in International Conference on Ma-
chine Learning, 2021, pp. 6804–6814.

[30] P. Kamath, A. Tangella, D. Sutherland, and N. Srebro,
“Does invariant risk minimization capture invariance?”
in International Conference on Artificial Intelligence and
Statistics, 2021, pp. 4069–4077.

[31] Y. Dranker, H. He, and Y. Belinkov, “Irm—when it works
and when it doesn’t: A test case of natural language
inference,” Advances in Neural Information Processing
Systems, vol. 34, pp. 18 212–18 224, 2021.

[32] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-
learning for fast adaptation of deep networks,” in ICML,
ser. Proceedings of Machine Learning Research, vol. 70.
PMLR, 2017, pp. 1126–1135.

[33] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey,
“Meta-learning in neural networks: A survey,” IEEE
transactions on pattern analysis and machine intelli-
gence, vol. 44, no. 9, pp. 5149–5169, 2021.

[34] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi,
A. Atallah, R. Herbrich, S. Bowers, and J. Q. Candela,
“Practical lessons from predicting clicks on ads at face-
book,” in ADKDD@KDD. ACM, 2014, pp. 5:1–5:9.

[35] C. Cheng, F. Xia, T. Zhang, I. King, and M. R. Lyu, “Gra-
dient boosting factorization machines,” in Proceedings
of the 8th ACM Conference on Recommender systems,
2014, pp. 265–272.

[36] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil,
and D. S. Turaga, “Learning feature engineering for
classification.” in Ijcai, 2017, pp. 2529–2535.



[37] Y. Bengio, “Practical recommendations for gradient-
based training of deep architectures,” in Neural Net-
works: Tricks of the Trade (2nd ed.), ser. Lecture Notes
in Computer Science. Springer, 2012, vol. 7700, pp.
437–478.

[38] L. N. Smith, “Cyclical learning rates for training neural
networks,” in 2017 IEEE winter conference on applica-
tions of computer vision (WACV). IEEE, 2017, pp. 464–
472.

[39] F. J. M. Jr., “The kolmogorov-smirnov test for goodness
of fit,” Journal of the American Statistical Association,
vol. 46, no. 253, pp. 68–78, 1951.

[40] D. Kaur, S. Uslu, K. J. Rittichier, and A. Durresi, “Trust-
worthy artificial intelligence: a review,” ACM Computing
Surveys (CSUR), vol. 55, no. 2, pp. 1–38, 2022.


