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Abstract Rumor detection has become an emerg-
ing and active research field in recent years. At the
core is to model the rumor characteristics inherent
in rich information, such as propagation patterns in
social network and semantic patterns in post con-
tent, and differentiate them from the truth. However,
existing works on rumor detection fall short in mod-
eling heterogeneous information, either using one
single information source only (e.g., social network,
or post content) or ignoring the relations among
multiple sources (e.g., fusing social and content fea-
tures via simple concatenation).
Therefore, they possibly have drawbacks in com-
prehensively understanding the rumors, and detect-
ing them accurately. In this work, we explore con-
trastive self-supervised learning on heterogeneous
information sources, so as to reveal their relations
and characterize rumors better. Technically, we sup-
plement the main supervised task of detection with
an auxiliary self-supervised task, which enriches

post representations via post self-discrimination.
Specifically, given two heterogeneous views of a
post (i.e., representations encoding social patterns
and semantic patterns), the discrimination is done
by maximizing the mutual information between dif-
ferent views of the same post compared to that of
other posts. We devise cluster-wise and instance-
wise approaches to generate the views and conduct
the discrimination, considering different relations
of information sources. We term this framework as
Self-supervised Rumor Detection (SRD). Extensive
experiments on three real-world datasets validate
the effectiveness of SRD for automatic rumor detec-
tion on social media.
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1 Introduction

Social media platforms (e.g., Twitter, Facebook,
Sina Weibo) have emerged as a major source of
information, where users can easily view, post, for-
ward, and comment on any content at little price.
However, it also causes the proliferation of rumors,
which encode misinformation and disinformation.
The massive spread of rumor circulation has become
a serious threat, influencing the societal or political
opinions of the public. Taking the 2016 US pres-
idential election as an example, the inflammatory
news that favored two nominees was shared over
37 million times on Facebook [1], while around 19
million malicious bot accounts tweeted or retweeted
supporting two nominees on Twitter [2]. Therefore,
it is of great importance to detect rumors accurately
and debunk rumors early before they reach a broad
audience.

Identifying and modeling the patterns of rumor
posts has become the theme, so as to differentiate
the rumors from the truths. Towards this end, mul-
tiple information sources are leveraged to profile
the rumors and truths. Among them, two infor-
mative and useful sources are (1) social network,
which consists of user-user social connections and
user-post interaction connections, reflecting how in-
formation flows and propagates along with these
connections; and (2) post content, which are typi-
cally composed of text pieces and often associated
with pictures or videos, that encode rich semantics.
Here we focus mainly on these semantic and propa-
gation patterns.

Existing works on rumor detection follow a super-
vised learning scheme — generating post represen-
tations from these information sources and feeding
them into a supervised learning model guided by the
ground-truth labels. Learning post representations

roughly falls into two types: (1) using one informa-
tion source individually; (2) fusing two information
sources. Nonetheless, both types of methods suffer
from some inherent limitations:

• There are numerous efforts on modeling ei-
ther post content or social network solely, but
failing to model them simultaneously. Specif-
ically, a line considers the semantic patterns
(e.g., lexical, syntactic, sentiment, topic-level
features) in post content [3, 4], while another
line focuses on the propagation patterns in
social network [5, 6], in order to generate
high-quality representations of rumors. For
example, earlier work [7] proposes to formu-
late the rumor propagation as a sequence via
a recursive neural network. More recently,
Bi-GCN [5] employs graph neural network
(GNN) over the holistic social network to per-
form the information propagation and aggre-
gation among relevant posts. While being
effective from the perspective of modeling
individual information source, these methods
leave other supplementary information un-
touched, which degrade model effectiveness.

• Some works [8, 9] explore how to integrate
multiple information sources to characterize
rumors more comprehensively. For exam-
ple, CGAT [8] combines the representations
encoding propagation and semantic patterns
together via concatenation and pooling op-
erators. Nevertheless, such integration is of
limited ability to model the relations between
these co-occurring heterogeneous patterns. It
has been proved that information with dif-
ferent contents has different audiences and
different propagation paths which makes dif-
ferent temporal patterns and diffusion speeds
[10]. Taking the 2016 US presidential elec-
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Fig. 1 Real rumor in PHEME dataset [11], which is ex-
pressed as propagation tree with text content.

tion as an example, given the content of a
post supporting one nominee, we could pos-
sibly infer the audiences of interest and their
sentiments, and further imagine its propaga-
tion among these audiences; analogously, we
could estimate the coarse-grained topic of a
post, based on its information flow. Hence,
ignoring the relations falls short in revealing
hidden patterns and results in suboptimal rep-
resentations of rumors.

To overcome the limitations of prior studies, we
explore self-supervised learning (SSL) [12–14] on
heterogeneous information sources, to reveal their
relations and characterize rumors better. Techni-
cally, we supplement the main supervised learn-
ing task of rumor detection with an auxiliary self-
supervised learning task of post self-discrimination.
These two tasks are founded upon the same post rep-
resentations — we apply the GNN encoder over the
social network and aggregate the information from
the neighbors, so as to inject the propagation pat-
terns into the social representation of a post; mean-
while, we employ the CNN encoder to generate the
semantic representations from a post’s content. The
SSL task is composed of two modules: (1) Data

augmentation: we devise instance-wise and cluster-
wise augmentation operators, and leverage them
to derive different views of a post from its social
and semantic representations; (2) Contrastive learn-
ing: we encourage the agreement between differ-
ent views of the same post to be maximized, while
minimizing the agreement between different posts.
Such an SSL task allows us to explicitly measure
the relations among different information sources,
and guides the learning of post representations. We
term this framework as Self-Supervised Rumor De-
tection (SRD). Extensive experiments are conducted
on three real-world datasets. Experimental results
from Twitter and Weibo demonstrate superior per-
formance over the state-of-the-art methods like Bi-
GCN [5]. Our contribution can be summarized as
follows:

• We integrate the propagation and semantic
patterns of posts via self-supervised learning.
To the best of our knowledge, we are the first
to leverage self-supervised learning for rumor
detection on social media.

• We propose cluster-wise and instance-wise
discrimination as the self-supervised learning
task to fulfill the potential of heterogeneous
data.

• Extensive experiments on three real-world
datasets demonstrate the superiority of our
proposed framework. We will release our
codes upon acceptance.

2 Related Work

In this section, we review the work on rumor detec-
tion, graph convolutional network, and self-supervised
learning.
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2.1 Rumor Detection

Recently, automatic rumor detection comes into
public attention. Traditional methods mainly focus
on machine learning algorithms such as decision
trees and SVM, which utilize manually extracted
discrete features to determine if the sample given
is worth trusting. Castillo et al. [15] identifies four
kinds of features from Twitter, message, user, topic,
and propagation, respectively. Following-up works
mainly focus on characterizing one or a mixture
of the 4 types of features. Yang et al. [16] studies
two new features, the client program used and event
location, and extends the original work to Chinese.
Ma et al. [17] takes time stamps for news events into
account and designs a dynamic series-time structure
to model the changes or the trends of individual mes-
sages along the life cycle. Liu et al. [18] points out
the importance of real-time prediction, and found
some features are more important for early detec-
tion while others begin dominating in later stages.
Ma et al. [19] represents the propagation of each
source tweet with a propagation tree, and captures
sub-structures that are indicative of rumors by es-
timating the similarity between propagation trees
via propagation tree kernel learning. The perfor-
mance of these models largely relies on the quality
of feature engineering.

With the rise of deep learning and neural network,
the focus has shifted from feature engineering to
model learning. Ma et al. [20] employs Recurrent
Neural Network (RNN) to model news event as a
sequence to better capture contextual information.
Jin et al. [21] fuses features from textual, visual, and
social context contents, and utilizes attention mech-
anism to align features in RNN. Chen et al. [22] em-
beds attention mechanism to RNN to enable impor-
tance focus that varies over time. Some researchers

explore adding additional features to the model.
Guo et al. [23] adopt some social features and de-
sign a hierarchical social attention network. And Li
et al. [24] add user profiles to evaluate the user cred-
ibility. Ma et al. [7] proposes tree-structured Recur-
sive Neural Networks (RvNN) to make predictions
in a hierarchical structure with features extracted
from both text contents and propagation structures.
Yu et al. [25] adopts a Convolutional Neural Net-
works (CNN) based model to automatically obtain
key features from the representation learned from
an unsupervised method - paragraph vector. Kumar
et al. [26] introduces both a CNN and a bidirec-
tional LSTM ensembled network with an attention
mechanism to do rumor detection. Similarly, Liu
et al [27] detects fake news using a combination
of recurrent and convolutional networks. Rao et
al [28] pre-trains a two-layer BERT, which takes
comments as auxiliary features for fine-tuning. Re-
cently, adversarial learning is proved to be helpful
with the robustness of the model. Song et al [29]
devises adversarial learning to improve the vulnera-
bility of detection models. DropAttack [30] is a new
adversarial training method, which allows a certain
weight parameter of the model to be attacked with
a certain probability. These methods make much
progress in misinformation identification, but they
neglect the global structural features of rumor prop-
agation.

2.2 Graph Convolutional Network

Inspired by the great success of Convolutional Neu-
ral Network (CNN), Graph Neural Networks (GNNs)
begin to emerge in supervised or semi-supervised
tasks like node classification [31], link prediction
[32] and graph classification [33], as well as un-
supervised tasks like network embedding [34] and
graph generation [35].
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Graph Neural Network can be categorized into
two directions: the spectral-based approaches and
the spatial-based approaches [36]. The spectral-
based approaches are based on spectral graph theory,
they inherit the idea from graph signal processing
and propose variant graph convolution kernels. The
spectral-based methods are powerful but most of
them are in transductive settings. The spatial-based
methods construct convolutional filters by looking
into the spatial relationship between nodes. Since
their focus is on training a function that aggregates
neighborhood information to get the representation
of the current node, spatial-based methods general-
ize GNN to inductive learning.

Kipf et al. [31] proposes a fast approximate con-
volution on graphs, which becomes one of the most
representative works in Spectral GCN. Niepert et
al. [37] discusses the equivalence of neighborhood
graph and receptive field. Hamilton et al. [38] pro-
poses GraphSAGE, an inductive framework that is
able to deal with previously unseen data. To address
the issue that neighborhood contribution may not
be the same, veličković et al. [39] proposes Graph
Attention Network (GATs) that introduces attention
mechanism to neighborhood aggregation. Due to
their advantages in dealing with non-euclidean data,
GNNs have proved their power in areas like recom-
mender systems [40–42], social network [38] that
always make contact with graph-structured data. In
rumor detection, Tian et al. [5] proposes Bi-GCN,
with top-down direction for rumor propagation and
bottom-up direction for rumor dispersion; Yang et
al. [8] constructs four types of camouflage strategies
which are introduced to GCN through adversarial
training; Lin et al. [43] designs a Hierarchical Graph
Attention Networks to attend over the responsive
posts that can semantically infer the target claim.

2.3 Self-supervised Learning

Deep neural network models can solve supervised
learning problems well with enough labeled data.
However, manual labels are expensive and may re-
quire domain-specific knowledge. Self-supervised
learning can generate pseudo-labels, or cluster input
through the comparison between positive and neg-
ative pairs. Thus studies on self-supervised learn-
ing are divided into two branches: generative mod-
els [13] [44] and contrastive models [45].

For generative model variants, one of the most
popular models is auto-encoding. This method en-
codes the input data, and tries to reconstruct it with
decoding, during the process noises can be inten-
tionally added to enhance model robustness [13].
Ian et al [46] proposes a generative adversarial net-
work (GAN) for estimating generative models via
an adversarial process.

Contrastive models are another important branch
in self-supervised learning. Michael et al. [47] de-
fines the notion of Noise Contrastive Estimation
(NCE), acting as the objective of most contrastive
learning models. The comparison objects can be
either context-instance contrast or instance-instance
contrast [48]. The former models the relationship
between the local part of a sample and its global
context representation. Hjelm et al. [45] proposes
Deep Infomax (DIM) that maximizes the mutual
information between the local part of an image and
its global context. Contrastive Predictive Coding
(CPC) [49] generalizes this work to speech recogni-
tion, which contrasts audio segments with the whole
audio. However, Tschannen et al. [50] provides em-
pirical evidence that MI may not be the only rea-
son for this success, and it also strongly depends
on the encoding structure and negative sampling
strategy. In this case, instance-instance contrastive
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focus on instance-level representation instead of
MI. One direction [51] [52] [53] iterates between
feature encoding and cluster discrimination. The
cluster assignment from the discriminator will act
as pseudo label signal to improve the quality of the
encoder. Another branch is instance-discrimination.
He et al. [14] proposes Momentum Contrast (Moco)
which substantially increases the number of nega-
tive samples. Chen et al. [12] proposes SimCLR
that proves the importance of hard positive example,
the model follows the end-to-end framework and is
trained in quite large batch size. Our method mainly
focuses on contrastive learning.

There are also some recent works on SSL for
graph data. Veličković et al. [54] Deep Graph Info-
max (DGI), which extends DIM to graph-structured
data. Kim and Oh [55] proposes superGAT which
self-supervise graph attention through edges. Wu et
al. [56] applies graph SSL to recommender systems,
and presents theoretical analyses of
self-supervised graph learning. However, to the best
of our knowledge, self-supervised learning has not
been explored in the task of rumor detection.

3 Methodology

In this section, we first formulate rumor detection
problems (Section 3.1), and introduce 4 core parts
of our proposed framework SRD (Section 3.2).

3.1 Task Description

We first introduce some commonly used notations.
We would use bold capital letters (e.g. A) to rep-
resent matrices and lowercase letters (e.g. v) to
represent vectors. Note that by default all of the
vectors are in column, i.e. v ∈ Rd. Xi j stands for the
element in matrix X located at row i and column j.
Table 1 lists some of the terms mentioned.

As an individual post contains very limited con-
text and is short in nature, we follow previous works
[5, 20] and focus on rumor detection at a granular
level of event (i.e., a group of posts) instead. Let C
be a set of events, where each event c ∈ C originates
from a source post with the rumor or truth label yc.
Event c is associated with two heterogeneous data:
(1) propagation tree < V,E >, whereV and E de-
note the sets of post nodes and their connections.
In particular, the source post of c serves as the root
node, and the other nodes are the replies relevant
to the source post. The edge (vi, v j) ∈ E is directed,
representing that post vi is a reply to v j. (2) semantic
contents, where each post node v ∈ V is attached
with its content features x ∈ Rd, and d is the fea-
ture dimension. As a result, we can reorganize each
event c in the form of an attributed graph with the
adjacency matrix A ∈ R|V|×|V|, whose element is:

Ai j =

1, (vi, v j) ∈ E

0, otherwise
. (1)

We formulate the task of rumor detection as follows:
given an event c with an attributed graph, we would
like to exploit its heterogeneous data (i.e., propaga-
tion tree and semantic content), and predict whether
the information contained in the event is credible.

3.2 Our Framework

In this section, we present our proposed framework,
self-supervised rumor detection (SRD). It is com-
posed of four modules: (1) propagation representa-
tion learning, which applies a GNN model on the
propagation tree; (2) semantic representation learn-
ing, which employs a text CNN model on the post
contents; (3) contrastive learning, which models the
co-occurring relations among propagation and se-
mantic representations; and (4) rumor prediction,
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Fig. 2 The framework of our proposed self-supervised learning rumor detection (SRD). The framework consists of 4 modules:
Graph Encoder, Text Encoder, Contrastive Learning Module, and FC supervised prediction module. The contrastive learning
module here is thumbnail of Fig 3.

Table 1 Notations and Corresponding Explanations
Notation Explanation

A,D Adjacency matrix and degree matrix of a graph
X = [x1, x2, · · · , xN]T Feature matrix of the attributed graph

Wl, bl Trainable weights and bias term at layer l
θ Model parameters requires gradient
gi graph view representation
ti text view representation

which builds a predictor model upon the event rep-
resentations.

3.2.1 Propagation Representation Learning

The propagation tree of a post presents how its in-
formation flows along with the source network, es-
pecially reflecting the user-user interactions. Prior
studies [57] have shown that the propagation pat-
terns of rumors are different from that of the truth.
Inspired by this, we use a graph neural network
(GNN) to extract such patterns as propagation repre-

sentations of posts. At its core is to apply the neigh-
borhood aggregation scheme on the propagation
tree A of a post, which updates the node represen-
tations by aggregating the vectorized information
passing from neighbors:

H(l) = σ(D−
1
2 ÂD−

1
2 H(l−1)W(l)), (2)

where H(l) is the node representation at the l-th layer,
H(l−1) is that of previous layer, and H(0) = X uses
the multi-hot encoding embedding in terms of word
distribution in post as the initial representations; D
is the degree matrix, and Â = A + I is the adja-
cency matrix with the identify matrix I representing
self-connections; σ(·) is the nonlinear activation
function, which we set as ReLU. After adopting L
layers recursively, we finalize the representations
as H(L), which encode L-order connectivity among
nodes. Here we set L as 2.
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Having established the representations of nodes
within the propagation tree, we use a readout func-
tion to get the representation of the source post.
Here we resort to the mean pooling operator fmean-pooling(·):

g = fmean-pooling(H(L)). (3)

3.2.2 Semantic Representation Learning

Most of the time in human society, authorities and
experts identify rumors by looking into the textual
materials to find suspicious content based on their
domain knowledge. Intuitively, semantic features
have implications for the credibility of a post. To ad-
dress this issue, we adopt a multi-head self-attention
layer combined with CNN to get a comprehensive
representation of the post [8]. Here powerful pre-
train models like BERT are not chosen for two
reasons: (1) The size of the benchmark datasets
are too small to do fine-tuning. (2) They are time-
consuming and need a great amount of memory.

Multi-head attention [58] allows for capturing
word representations from different subspaces. Con-
sidering a multi-head attention layer with h heads,
each head is a parallel attention layer. These heads
share three input matrices: query matrix Q, key ma-
trix K, and value matrix V. For each head i, these
input matrices will be projected into dk, dk, dv di-
mension subspaces as Qi, Ki, Vi through trainable
linear projections WQ

i ∈ R
dmodel×dk , WK

i ∈ R
dmodel×dk ,

WV
i ∈ R

dmodel×dv , respectively. Here we adopt the self-
attention scheme where Qi = Ki = Vi. This scheme
enables every word to attend to each other, and as
a result, every single word will be represented by
the most similar words. More formally, at each it-
eration, vectors in Qi serve as queries and interact
with keys in Ki via inner product scaled by

√
dk,

on which a softmax function is applied to obtain
weights for values in Vi. We denote the output of

the i-th head by Zi:

Zi = fattention(Qi,Ki,Vi) = fsoftmax(
QiK

T
i

√
dk

)Vi. (4)

The final output Z of multi-head attention can be
calculated as a linear projection of concatenation of
h heads:

Z = fmulti-head(Q,K,V) = fconcatenate(Z1, ...,Zh)WO,

(5)
where WO ∈ Rhdv×dmodel .

Multi-head self attention performs extremely well
in capturing the long-range dependency. Thus many
computer vision tasks, such as image classification
[59] and object detection [60], employ self-attention
as add-ons to boost the performance of traditional
CNNs. Here we borrow this idea to further extract
text features. Z ∈ Rl×dmodel is treated as the input of
CNN, where l is the length of the post (padded or
truncated if necessary), and dmodel is the dimension
of the representation vector of each word.

A convolution operation is a filter w ∈ Rh×dmodel

applied to a window of h words to extract high-
level features, where h is called the reception field
involving h words simultaneously. For example,
feature vector vi can be generated from a window
of words zi:i+h−1:

vi = σ(w · zi:i+h−1 + b), (6)

where zi:i+h−1 is the concatenation of pre-train word
representations, i.e., fconcatenate(zi, ..., zi−h+1), b ∈ R is
the bias term and σ is the activation function like
ReLU. In a sentence, the filter will be applied to
every possible window of words:

v = [v1, v2, ... , vn−h+1]. (7)

Then the max pooling is adopted over the calculated
feature map to highlight the most present feature in
the patch:

v̂ = fmax-pooling(v). (8)
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Filters with different reception field k focus on
words in k-gram pattern. Inspired by [61], we use
n filters with various window size, and concatenate
the output to serve as the ultimate text representation
t:

t = fconcatenate(v̂1, v̂2, ... , v̂n). (9)

3.2.3 Contrastive Learning

Having derived the propagation representation from
the GNN module and the semantic representations
from the CNN module, we want to fuse these two
heterogeneous representations to uncover their un-
derlying relations and find a more comprehensive
portrayal of posts. Although many empirical analy-
ses between content features and spreading patterns
are conducted, it is still unclear what features of the
content are the critical factors to affect the spreading
pattern [62].

From a probability perspective, we suppose text
content could provide a low entropy prior for prop-
agation structure identification. Towards this end,
we devise the self-supervised learning tasks from
the perspectives of instance- and cluster-wise dis-
crimination.

Propagation-Semantic Instance Discrimination
(PSID). For a given post, the propagation tree and
semantic content simultaneously characterize it from
two different views. To model such co-occurring
relations, we consider a self-supervised task of post
self-discrimination — predicting whether two views
are from the same post instance. Formally, we treat
the views of the same post instances as the posi-
tive pairs, i.e., {(gi, ti)|i ∈ C}, and that of any two
different post instances as the negative pairs, i.e.,
{(gi, t j)|i, j ∈ C, i , j}. Note that gi and t j are gen-
erated graph and text representation by correspond-
ing encoder E1 and E2, respectively. The positive

pairs offer the auxiliary supervision to enforce the
consistency between two views of the same posts;
whereas, the negative pairs encourage the diver-
gence among different posts. The objective function
of post self-discrimination is formulated as:

Lssl =
∑
i∈C

− log[
exp(s(gi, ti)/τ)∑

j∈C exp(s(gi, t j)/τ)
] (10)

where s(·) stands for the similarity function, which
we set as the inner product; τ is a temperature hyper-
parameter, which plays a critical role in mining hard
negatives.

Propagation-Semantic Cluster Discrimination
(PSCD). Going beyond the instance-wise discrimi-
nation [12,14], we are motivated by the prior works
[51] and also devise a cluster-wise discrimination
task. Since PSID is a contrastive learning method
that need to compute pairwise comparisons, its per-
formance relies on the negative sampling strategy.
We aim to utilize simple clustering methods like K-
means to cluster the data points and enforce consis-
tency between cluster assignments produced from
different views (i.e., propagation and semantic) of
the same post. Intuitively, similar posts are highly
likely to have similar views, thus we can group posts
into several clusters and distill cluster-wise features
of posts. The self-supervised task can be formulated
as maximizing in-group homogeneity. More clearly,
the cluster assignment of propagation post would
act as pseudo-labels to the semantic representation,
and vice versa. Technically, the model consists of
two components, encoders E1 and E2, which map a
post c’s propagation representation g and semantic
representation t into the d-dimensional cluster-wise
representations, respectively. Then the discrimina-
tor assigns these cluster-wise representations to one
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of the K clusters:

min
S1

∑
c∈C

min
a1
‖E1(g) − S1a1‖

2
2 +

min
S2

∑
c∈C

min
a2
‖E2(t) − S2a2‖

2
2 ,

s.t. a>1 1 = 1, a>2 1 = 1, (11)

where SG and ST ∈ R
d×K separately denote the

trainable centroid matrices of graph structure and
semantic content, whose k-th column is the centroid
representation of the k-th cluster; a1 and a2 ∈ {0, 1}K

are one-hot encoding, which represent the cluster
assignments based on graph structure and semantic
content, respectively. Here we adopt the iterative
optimization framework: given the centroid matri-
ces, we learn the best cluster indicators as a1 and a2;
then the assignment results guide the optimization
of S1 and S2. As a result, a set of optimal cluster
assignments {a∗1, a

∗
2|c ∈ C} are established as the

pseudo-labels or supervision signal to enhance the
representations of posts, as follows:

Lssl =
∑
c∈C

l( f1(E1(g)), a2) + l( f2(E2(t)), a1), (12)

where l(·) is the negative log-softmax function; f1(·)
is a trainable classifier, which takes the swapped
propagation representation g as input to predict the
semantic-aware cluster assignment a2, analogously
to f2(·). The procedure of PSCD and PSID are
shown in Figure 3 and Algorithm 1.

3.2.4 Rumor Prediction

We build a rumor detector model on the top of a
post c’s propagation representation g:

p(c) = σ(Wg + b), (13)

where p(c) presents the probability of the post being
the rumor; W is the trainable matrix, and b is the

Algorithm 1: Training Procedure
Input: Attributed graph with node features,

edges and labels G = {V,E,X,Y},
Number of GNN layers, number of
CNN layers, batches and training
epochs GL,CL, B, E

Output: Classification Result: Rumor or
Non-Rumor

1 Initialization: h0
v ← xv;

2 for e=1, ..., E do
3 for b=1, ..., B do
4 for l=1, ..., GL do
5 gv ← Eq.(2)(3),∀v ∈ Vb;

// Propagation

representation

6 for l=1, ..., CL do
7 zx ← Eq.(4)(5)(6),∀x ∈ X;

// Semantic

Representation

8 if PSCD then
9 freeze S and get a← Eq.(11)

10 freeze a and update S← Eq.(11);
// K-means

11 Lssl ← Eq.(12)

12 if PSID then
13 negative sampling
14 Lssl ← Eq.(10)

15 Lmain ← Eq.(14)
16 L ← Eq.(15)

bias term. This term is used in a cross-entropy loss,
framing the main supervised learning task:

Lmain = −
∑
c∈C

y log(p(c)), (14)

where y is the binary label indicating whether a post
is rumor. We adopt a multi-task learning strategy to
jointly optimize the main supervised learning task
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Fig. 3 Overview of instance discrimination and cluster-discrimination approach. Propagation-Semantic Instance Discrimina-
tion (PSID) and Propagation-Semantic Cluster Discrimination (PSCD) are represented. The blue arrows stand for feed forward,
while the red arrows stand for back propagation.

and the auxiliary self-supervised learning task:

L = Lmain + λLssl, (15)

where λ is a hyper-parameter to control the strength
of the auxiliary task.

4 Experiments and Analyses

We perform experiments on three real-world datasets
to evaluate our proposed method, especially the self-
supervised learning module. We aim to answer the
following research questions:

• RQ1: How does SRD perform as compared
with state-of-the-art methods?

• RQ2: How effective are Graph Neural Net-
work, Text Encoder and SSL, respectively, in
improving the rumor detection performance
of SRD? And how do different hyper-parameter
settings (e.g., loss scalar λ, temperature pa-
rameter τ) affect our method?

• RQ3: Can SRD perform well on early rumor
detection?

4.1 Dataset

We conduct extensive experiments on three widely
used benchmark on rumor detection: Twitter [19],
Weibo [20], and PHEME [11]. These datasets are
representative since they contain blogs and posts
from the most influential social media sites in China
and United States, respectively. The Weibo dataset
contains two binary labels: F stands for False Ru-
mor and T stands for True Rumor, while Twitter
dataset and PHEME dataset contain multiple labels:
N stands for Non-rumor, F stands for False Ru-
mor, T stands for True Rumor, and U stands for
Unverified Rumor. The rumors from Weibo dataset
are from the Sina community management center,
which reports various misinformation; while non-
rumor events are the posts that are not reported as
rumors [20]. And the labels in Twitter are converted
from binary to quaternary according to the verac-
ity tag of the article in rumor debunking websites
(e.g., snopes.com, Emergent.info, etc [19]. The
PHEME dataset contains tweets about 9 topics that
are closely related to politics and people’s liveli-
hood, and the labels are annotated by news practi-
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Table 2 Statistics of the Dataset

Statistic Weibo Twitter PHEME

# of posts 3,805,656 204,820 33288

# of users 2,746,818 173,487 -

# of events 4,664 818 6425

# of True Rumors 2,351 205 1067

# of False Rumors 2,313 205 638

# of Unverified Rumors - 203 698

# of Non-rumors - 205 4022

tioners. Following [5, 7], we use the same prepro-
cessed dataset: every sample is a propagation tree,
whose nodes and edges are posts and their retweet or
response relationships. The statistics of the datasets
are summarized in Table 2, nonexistent or unknown
statistics are marked as ”-”.

4.2 Baseline

We compared our proposed method with the follow-
ing strong baselines, including classic and state-of-
the-art rumor detection methods.

• DTC [15]: A method extracting features man-
ually, based on which they train a Decision
Tree Classifier to predict the label of events.

• SVM-RBF [16]: SVM Classifier with RBF
kernel, using the hand-crafted feature to do
classification.

• SVM-TS [17]: SVM based model that uti-
lizes time series information to capture tem-
poral features for prediction.

• SVM-TK [19]: SVM Classifier takes propa-
gation structure into consideration by design-
ing and leveraging Propagation Tree Kernel.

• RvNN [7]: A method that employs Recursive
Neural Networks with GRU units, integrates
both propagation structure and content se-
mantics for detecting rumors from microblog

posts.
• STS-NN [63]: A method that treats the spa-

tial structure and the temporal structure as a
whole to model the message propagation.

• PPC [27]: A method that focuses on user
characteristics to do propagation path classi-
fication with a combination of recurrent and
convolutional networks.

• BiGCN [5]: The first study to solve rumor
detection problem with GCN, focusing on
both rumor propagation and rumor dispersion
with top-down propagation tree and bottom-
up propagation tree, respectively.

• EBGCN [64]: The first study to explore prop-
agation uncertainty for rumor detection, which
adaptively rethinks the reliability of latent re-
lations by adopting a Bayesian approach.

4.2.1 Implementation Details and Metrics

We focus on comparison with the state-of-the-art
model, so the other baseline models’ experiment
results are cited from [5]. We implement BiGCN,
EBGCN and our proposed method with Pytorch,
and all the three models are tested on Geforce RTX
2080Ti. When running EBGCN on Weibo dataset,
it raises an ”Out of Memory” issue. To make a
fair comparison, we randomly split the dataset into
5 parts with a fixed seed, and employ 5-fold val-
idation to get the robust result. We utilize Adam
algorithm [65] as optimizer with default setting un-
changed (0.9 and 0.999, respectively). Mini-batch
size is set to 128. The learning rate varies during
training with cosine annealing strategy [66]. For
semantic modules, rare word deletion is adopted to
reduce noise in data, i.e., deleting words that appear
less than 2 times. Note that this operation could lead
to the emptiness of samples, which should also be
removed. Text words are truncated or padded to a
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fixed length L to form the input matrix. The convo-
lutional kernel size in CNN is set to (3,4,5) with 100
feature maps each, and a dropout rate of 0.5. Word
embeddings that act as the input of the text encoder
are initialized with 300-dimensional word2vec [67]
trained on social media corpora, where words not
seen before would be initialized from a uniform
distribution. We also try to inference Bert [13] to
acquire the representation of sentences, which indi-
cates that the choice of pretrained embedding is not
crucial in our method. We keep the word vectors
trainable during the process, for propagation infor-
mation may leverage constraints on them. All of
the trainable parameters are initialized with Xavier
initializer [68]. For other hyper-parameters, we ap-
plied grid search: the start learning rate is chosen
between {0.0005, 0.001, 0.01, 0.05}, and the tem-
perature is searched through {0.1, 0.2, 0.5, 1, 2}; λ,
which balance the loss of prime learning LPrime and
that of contrastive learning Lcl, is tuned within the
range of {0.005, 0.01, 0.05, 0.1}.

For fair comparison, We follow the previous work
[5, 27] to adopt Accuracy, Precision, Recall and F1
score as indicators to evaluate the overall perfor-
mance of models.

4.3 Result Analysis

To answer RQ1, we compare SRD with the algo-
rithms introduced in Section 4.2, results on Twitter,
Weibo and PHEME dataset are shown in Table 3, 4
and 5 respectively. We can observe:

SRD consistently outperforms all of the baselines
on all datasets. And as we can see, deep learning
models achieve a much better result than models
based on hand-crafted features, which is normal
because they enable automatic feature engineering
and high-level representation. What’s more, our
proposed method and Bi-GCN perform better than

Table 3 Performance Comparison on Twitter Dataset

Method Accuracy
N F T U

F1 F1 F1 F1

DTC 0.473 0.254 0.080 0.190 0.482

SVM-RBF 0.553 0.670 0.085 0.117 0.361

SVM-TS 0.574 0.755 0.420 0.571 0.526

SVM-TK 0.732 0.740 0.709 0.836 0.686

RvNN 0.737 0.662 0.743 0.835 0.708

STS-NN 0.810 0.753 0.766 0.890 0.838

PPC 0.863 0.820 0.898 0.843 0.837

EBGCN 0.871 0.820 0.865 0.922 0.861

Bi-GCN 0.886 0.830 0.881 0.942 0.885

SRD-PSCD 0.891 0.837 0.889 0.945 0.898

SRD-PSID 0.905 0.857 0.906 0.953 0.909

Table 4 Performance Comparison on Weibo Dataset
Method Class Accuracy Precision Recall F1 score

DTC
F

0.831
0.847 0.815 0.831

T 0.815 0.824 0.819

SVM-RBF
F

0.879
0.777 0.656 0.708

T 0.579 0.708 0.615

SVM-TS
F

0.885
0.950 0.932 0.938

T 0.124 0.047 0.059

RvNN
F

0.908
0.912 0.897 0.905

T 0.904 0.918 0.911

STS-NN
F

0.912
0.912 0.912 0.908

T 0.911 0.915 0.913

PPC
F

0.916
0.884 0.957 0.919

T 0.955 0.876 0.913

Bi-GCN
F

0.947
0.972 0.921 0.946

T 0.925 0.974 0.949

SRD-PSCD
F

0.949
0.954 0.945 0.949

T 0.945 0.954 0.950

SRD-PSID
F

0.962
0.967 0.956 0.961

T 0.956 0.967 0.962

RvNN and PPC (RNN + CNN), which proves the
importance of research in Graph Neural Networks
for rumor detection. The state-of-the-art method
of rumor detection, the performances of Bi-GCN,
EBGCN and STS-NN are less satisfactory com-
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Table 5 Performance Comparison on PHEME Dataset

Method Accuracy
N F T U

F1 F1 F1 F1

EBGCN 0.819 0.895 0.712 0.702 0.561

Bi-GCN 0.833 0.904 0.731 0.723 0.604

SRD-PSCD 0.839 0.905 0.721 0.741 0.605

SRD-PSID 0.838 0.905 0.774 0.734 0.604

pared to our proposed method PSCD and PSID in
all of the measurement metrics. Hereby, we attribute
our more feasible solution to two following reasons:
1) BiGCN and EBGCN do not incorporate linguis-
tic features or graph structures in post information,
instead, they focus more on feature mining in ru-
mor propagation and rumor dispersion; however,
the performance of GCN tends to decrease as the
number of nodes in propagation tree get smaller
because the information provided become sparser.
2) Our proposed method incorporates SSL in the
framework, this auxiliary task could improve the
performance of the primary task learning, and the
text content can provide supplementary informa-
tion and constraints to the Graph Neural Network
branch. Ablation study in Section 4.4 further proves
the opinion. The PSID version of SRD performs
better than or comparable to PSCD version on three
datasets, which demonstrates the effectiveness of
introducing negative sampling and pair comparison
to boost the performance. The multi-view strategy
enables the instance-discrimination approach to ben-
efit from the additional information from the other
views, while the cluster-discrimination approach
focuses more on the homogeneity of views of the
same event.
4.4 Study of SRD (RQ2)

4.4.1 Ablation Analysis

To get deeper insights into the different components
(especially the self-supervised learning module) of

Table 6 Ablation study of SRD demonstrated the advan-
tage of the GCN, text encoder and contrastive learning on
Twitter Dataset.

Method Accuracy
N F T U

F1 F1 F1 F1

SRD-TEXT 0.803 0.772 0.768 0.885 0.783

SRD-GRAPH 0.880 0.825 0.901 0.924 0.877

Bi-GCN 0.886 0.830 0.881 0.942 0.885

SRD-CONCAT 0.888 0.826 0.910 0.940 0.860

SRD-PSID 0.905 0.857 0.906 0.953 0.909

our method, we fully investigate their impacts.
SRD-TEXT is a variant of SRD, which only uses
rumor texts to do prediction.
SRD-GRAPH is a variant of SRD, which only uti-
lizes graph propagation structure and a 2-layer GCN
to do prediction.
SRD-CONCAT is a variant of SRD, which incorpo-
rates both of the structured information and seman-
tic features in the framework, but directly concate-
nates them without adding self-supervised learning
module.

Table 6 summarizes the comparison results. It
can be observed that: The Text-only method is
poor performing compared to all the other meth-
ods, which shows the importance of modeling the
relations between entities, as solely relying on lin-
guistic features to detect rumors can be unstable.
BiGCN’s performance is better than SRD-GRAPH,
the possible reason is that they incorporate the ru-
mor dispersion by adding bottom-up propagation
tree. SRD-CONCAT performs better than those
methods using either one of text contents or graph
feature. This indicates that linguistic features can
provide complementary information to propagation
patterns, thereby improving the detection results.
SRD-PSID outperforms SRD-CONCAT, which sup-
ports our
opinion that self-supervised learning can better uti-
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Table 7 Effects of the Network Depth

Dataset Metric 1 2 3 4

Twitter

Accuracy 0.860 0.905 0.879 0.858

NF1 0.760 0.857 0.818 0.774

FF1 0.837 0.906 0.882 0.829

TF1 0.905 0.953 0.921 0.896

UF1 0.794 0.909 0.896 0.878

Weibo

Accuracy 0.958 0.962 0.955 0.956

NF1 0.958 0.961 0.944 0.956

FF1 0.958 0.962 0.958 0.956

Table 8 Effectiveness of propagation structure

Dataset P Acc L Acc % of P and !L % of L and !P

Twitter 0.898 0.803 11.25 2.50

Weibo 0.954 0.910 8.125 3.75

lize heterogeneous features than simple concatena-
tion. According to Table 8, the column ”% of P and
!L” is the percentage of the instances which are cor-
rectly classified with propagation information rather
than linguistic information. From this table, we can
further conclude that the effectiveness of both tak-
ing propagation pattern and linguistic features into
consideration.

4.4.2 Effects of Network Depth

We vary the network depth L to investigate the ef-
ficiency of the usage of multiple embedding prop-
agation layers. In more detail, the layer number is
tested within the range of {1, 2, 3, 4}. We use SRD-
1 to represent 1 layer variant, and similar notations
for other variants. Figure 7 summarize the result of
comparison. We have the following observation:

Clearly, SRD achieves the best result at 2 layers.
In the case of network length L ≥ 3, the model
performance begins to decrease, which is consistent
with the choice of [5]. We think the possible reason
might be that high-order relations between entities,

Fig. 4 Depth of Propagation Tree Nodes Distribution on
Twitter and Weibo. x axis means the depth of nodes in a prop-
agation tree; e.g. 1 denotes the root node, then 2 will represent
the direct children of root node. For better visualization, we
classify those whose depth are greater than 5 into a single
category.

like third- and fourth-order connectivities, are rare
in the dataset; as seen in Figure 4, almost 65 percent
of nodes are first-order connections. Thus 3 or more
hop neighborhoods contribute little information to
the training. Another reason is that Graph Convo-
lution Network suffers more from over-smoothing
as layer depth increasing [69]. Analyzing Table 3,
Table 4 and Table 7 together, we can find that SRD
outperforms baselines which are not based on GCN.
It again proves the advantages of taking the rumor
propagation pattern into consideration.

4.4.3 Effects of Loss Scalar

As we adopt the primary and auxiliary framework,
λ should be tuned carefully to avoid the negative
influence from the supplementary task when prop-
agating gradient. We search for the near optimal
value within a small interval starting from 0. Fig
4 illustrates the performance of SRD with five λ
values {0, 0.005, 0.01, 0.05, 0.1}. As seen from the
figure, the performance of SRD changes smoothly
near the peak in Weibo dataset and PHEME dataset.
It varies more in Twitter dataset, we suppose the
possible reason is that the scale of the dataset is
relatively small (seen in Table 2). In most cases,
SRD is not sensitive to hyperparameter λ. Another
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Fig. 5 Model Accuracy w.r.t loss scalar λ

Fig. 6 Model Accuracy w.r.t temperature parameter τ

observation is that the performance rises with the
increase of the values of λ at the beginning, after
reaching the optimal value at around 0.01, it keeps
unchanged or decreases in a small value. We also
run test with λ equaling to 0.5, only to observe a
significant drop in model performance. According
to the above observation, we can draw a conclusion
that auxiliary task with a small λ can improve the
primary task while that with a large one might harm
or even mislead the supervised task.

4.4.4 Effects of Temperature Parameter

According to [12,70], temperature parameter τ plays
an important role in hard negative sampling and an
appropriate τ could benefit the representation learn-
ing task when cosine similarity is hired as similarity
function. We leverage both cosine similarity and dot
product as our similarity measurement, finding that
dot product works better in our task. Fig 6 shows
the test accuracy with respect to training epochs on

Twitter dataset and PHEME dataset. Weibo dataset
converges in three epochs, so it is excluded from the
figure. We can observe that: 1) SRD is not sensitive
to the value of τ since we adopt dot product rather
than cosine similarity, it is consistent with the result
in [12]: without l2 normalization, model with differ-
ent τ roughly converges to the same point. 2) As the
value of τ increasing, the model converges faster,
we attribute this phenomenon to the Uniformity-
Tolerance Dilemma [70]: if the text representation
and the propagation pattern from different samples
are similar, they are possibly a positive pair but la-
beled as hard negative mistakenly. This inspires us
with the future work of adopting the cosine similar-
ity function with an increasing τ.

4.5 Early Rumor Detection (RQ3)

It is crucial but challenging to detect rumor before
it flies high. Many researchers have addressed this
issue. Farinneya et al. [71] design an Active Trans-
fer Learning (ATL) strategy to identify rumors with
a limited amount of annotated data. Xia et al. [72]
propose a state-independent and time-evolving Net-
work which captures the event’s unique features
in different states. At the early stage, there is lim-
ited propagation information to utilize. Thus we
expect the text content could help with the issue.
To answer RQ3, we conduct experiments on early
rumor detection. Fig 7 summarizes the comparison
result between our proposed method and 3 chosen
baselines DTC, RvNN and Bi-GCN. We have the
following observation:

For DTC and RvNN, the performance decreases
significantly when the detection deadline is restricted
to 2 hours, while SRD and Bi-GCN are not affected.
Our proposed method is superior to all of the base-
lines at each deadline, we suppose this gap can
be partly attributed to text content representation,
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Fig. 7 Early Detection Performance on Weibo Dataset and
Twitter Dataset

which is available once the event begins.
Our proposed method can achieve high perfor-

mance within half an hour since the release of the
source post, which demonstrates that our proposed
method can effectively distinguish rumors at a very
early stage.

4.6 Case Study

To further validate the importance of textual infor-
mation, we randomly choose a propagation pattern
(e.g. 1→ 5→ 1), and see if SRD and BiGCN are
able to distinguish between 6 examples sharing this
same pattern. Within 6 samples, 2 are true rumors
(T) and 4 are unverified rumors (U), note that it’s a
weak indication that propagation structure to some
extent is related to categories of posts. Test runs are
performed with SRD and BiGCN, and we summa-
rize the comparison result in Fig 8. There are two
key observations:

Both models can distinguish true rumors and un-
verified rumors, for they can tell that the post is not
T/U when the post belongs to U/T by assigning the
lowest probability.

SRD predicts the label of a given sample at a
quite high confidence level of over 0.99, while the
highest softmax score of Bi-GCN, which represents
the probability, are 0.8252 and 0.2974 respectively.
Especially in the unverified case, Bi-GCN can only
tell that this post is not a true rumor, and the scores

������ !"��!#

Fig. 8 Result comparison on two real examples in Twitter.
These two examples have the same propagation structure with
different ground truth, true rumors and unverified rumors.
Softmax scores of prediction results by SRD and Bi-GCN are
listed in charts, respectively.

of the other 3 classes are similar. From this per-
spective, SRD is superior to Bi-GCN, which proves
the effectiveness of incorporating supplementary
information into the primary graph classification
task.

5 Conclusion and Future Work
In this work, we proposed a novel method, termed
self-supervised learning on rumor detection (SRD),
which accounts for both propagation structure and
semantic patterns of rumor. By introducing self-
supervised learning, we explicitly inject supplemen-
tary text representation into the primary rumor de-
tection, which is a supervised graph classification
task. In addition, we adopt instance-wise discrimi-
nation and cluster-wise discrimination, i.e. NT-Xent
loss and XDC to handle the data heterogeneity. Ex-
tensive experiments on three real-world datasets
demonstrate that SRD performs better than state-of-
the-art baselines, hence proving the effectiveness
and rationality of incorporating both propagation
tree and semantics in the framework. Since our
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model utilizes text content, which is available in
the early stage of an event, it can detect rumors
automatically earlier before state-of-the-art base-
lines. It is of great necessity since debunking ru-
mors early could avoid the influence from becoming
irreversible.

Since the propagation tree is permutation invari-
ant, i.e. children of the same node are treated
equally without considering timestamp, in the fu-
ture, we would further improve SRD by incorporat-
ing temporal structures. Another potential direction
is to join propagation trees and prepare a big graph
for semi-supervised prediction, so that we can gen-
eralize SRD from inductive to transductive settings
and utilize richer adjacency information. We are
also interested in altering GCN encoders. Hyper-
bolic graph neural network [73] could be an ideal
one, for its advantages in dealing with hierarchical
social networks. Another substitution is GCN along
with adversarial training like CGAT [8], which may
be beneficial to model robustness. Also with the
development of XAI, we believe graph neural net-
work explainability [74–76] holds great promise in
propagation-based rumor detection.
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